Note: In following table, $A_i$s are positive probability events that form a partition of sample space unless otherwise stated.
Description | Discrete | Continuous |
---|---|---|
Basic Expectation Related | ||
E[X] | $\sum_x xp_X(x)$ | $\int xf_X(x)dx$ |
E[g(X)] | $\sum_x g(x)p_X(x)$ | $\int g(x)f_X(x)dx$ |
if Y = aX + b | E[Y] = aE[X] + b | E[Y] = aE[X] + b |
if Y = aX + b | var(Y) = $a^2$var(X) | var(Y) = $a^2$var(X) |
Joint PMF\PDFs | ||
Marginal PMF\PDFs | $p_X(x)$ = $\sum_y p_{X,Y}(x,y)$ | $f_X(x)$ = $\int f_{X,Y}(x,y)dy$ |
E[g(X,Y)] | $\sum_x \sum_y g(x,y)p_{X,Y}(x,y)$ | $\int \int g(x,y)f_{X,Y}(x,y)dxdy$ |
if g(X,Y) = aX + bY + c | E[g(X,Y)] = aE[X] + bE[Y] + c | E[g(X,Y)] = aE[X] + bE[Y] + c |
Conditional PMF\PDF | $p_{X,Y}(x,y)$ = $p_Y(y)p_{X|Y}(x|y)$ | $f_{X,Y}(x,y)$ = $f_Y(y)f_{X|Y}(x|y)$ |
Conditional Expectation | ||
E[X|A] | $\sum_x xp_{X|A}(x)$ | $\int xf_{X|A}(x)dx$ |
E[g(X)|A] | $\sum_x g(x)p_{X|A}(x)$ | $\int g(x)f_{X|A}(x)dx$ |
E[X|Y=y] | $\sum_x xp_{X|Y}(x|y)$ | $\int xf_{X|Y}(x|y)dx$ |
E[g(X)|Y=y] | $\sum_x g(x)p_{X|Y}(x|y)$ | $\int g(x)f_{X|Y}(x|y)dx$ |
E[g(X,Y)|Y=y] | $\sum_x g(x,y)p_{X|Y}(x|y)$ | $\int g(x,y)f_{X|Y}(x|y)dx$ |
Total Probability Related | ||
$p_X(x)$ = $\sum_{i = 1}^n P(A_i)p_{X|A_i}(x)$ | $f_X(x)$ = $\sum_{i = 1}^n P(A_i)f_{X|A_i}(x)$ | |
P(A) | $\sum_x P(A|X=x)p_X(x)$ | $\int P(A|X=x)f_X(x)dx$ |
Total Expectation Related | ||
E[X] | $\sum_y p_Y(y)E[X|Y=y]$ | $\int f_Y(y)E[X|Y=y]$ |
E[g(X)] | $\sum_y p_Y(y)E[g(X)|Y=y]$ | $\int f_Y(y)E[g(X)|Y=y]$ |
E[g(X,Y)] | $\sum_y p_Y(y)E[g(X,Y)|Y=y]$ | $\int f_Y(y)E[g(X,Y)|Y=y]$ |
E[X] | $\sum_{i=1}^n P(A_i)E[X|A_i]$ | $\sum_{i=1}^n P(A_i)E[X|A_i]$ |
E[g(X)] | $\sum_{i=1}^n P(A_i)E[g(X)|A_i]$ | $\sum_{i=1}^n P(A_i)E[g(X)|A_i]$ |
$A_i$s, partition on B | E[X|B] = $\sum_{i=1}^n P(A_i|B)E[X|A_i\cap B]$ | |
X and Y are independent | ||
$p_{X,Y}$ = $p_X(x)p_Y(y)$ | $f_{X,Y}$ = $f_X(x)f_Y(y)$ | |
E[XY] | E[X]E[Y] | E[X]E[Y] |
E[g(X)h(Y)] | E[g(X)]E[h(Y)] | E[g(X)]E[h(Y)] |
var(X + Y) | var(X) + var(Y) | var(X) + var(Y) |
No comments:
Post a Comment